Построить сечение конуса плоскостью проходящей перпендикулярно оси. Вопросы к главе VI Цилиндр, конус и шар. Что представляет собой сечение конуса плоскостью, проходящей через его вершину

В зависимости от расположения секцией плос­кости Р относительно оси прямого кругового кону­са получаются различные фигуры сечения, огра­ниченные кривыми линиями.

Сечение прямого кругового конуса фронтально-проецирующей плоскостью Р рассматривается на рис. 182. Основание конуса расположено на плос­кости Н. Фигура сечения в данном случае будет ограничена эллипсом.


Фронтальная проекция фигуры сечения распо­ложена на фронтальном следе плоскости Р (рис. 182, а).

Для построения горизонтальной проекции кон­тура фигуры сечения горизонтальную проекцию основания конуса (окружности) делят, например, на 12 равных частей. Через точки деления на горизонтальной и фронтальной проекциях прово­дят вспомогательные образующие. Сначала нахо­дят фронтальные проекции точек сечения 1′ ...12", лежащих на плоскости P 1 . Затем с по­мощью линии связи находят их горизонтальные проекции. Например, горизонтальная проекция точки 2, расположенной на образующей s2, прое­цируется на горизонтальную проекцию этой же образующей в точку 2.

Найденные горизонтальные проекции точек контура сечения соединяют по лекалу. Действи­тельный вид фигуры сечения в данном примере найден способом перемены плоскости проекций. Плоскость Я заменяется новой плоскостью проек­ции Н 1 .

На фронтальной плоскости проекции V фигура сечения – эллипс изображается в виде прямой 1"7", совпадающей с фронтальной проекцией секущей плоскости Р. Эта прямая 1′7" является большой осью эллипса. Малая ось эллипса а"b" перпендикулярна к большой оси 1′ 7" и проходит


через ее середину. Чтобы найти малую ось сече­ния, через середину большой оси 1′7" эллипса проводят горизонтальную плоскость N, которая рассечет конус по окружности, диаметр которой будет равняться малой оси эллипса (a 0 b 0).

Построение развертки поверхности конуса (рис. 182, б) начинают с проведения дуги окруж­ности радиусом, равным длине образующей кону­са из точки S 0 . Длина дуги определяется углом α:

где d – диаметр окружности основания конуса; l – длина образующей конуса.

Дугу делят на 12 частей и полученные точки соединяют с вершиной s 0 . От вершины откладыва­ют действительные длины отрезков образующих от вершины конуса до секущей плоскости Р.

Действительные длины этих отрезков находят,


как и в примере с пирамидой, способом в около вертикальной оси, проводящей через шину конуса. Так, например, чтобы получитьдействительную длину отрезка S2, надо из 2′ провести горизонтальную прямую до пересечения в точке b" с контурной образующей конуса, являющейся действительной ее длиной.

К развертке конической поверхности пристраивают фигуры сечения и основания конуса.



Построение изометрической проекции усеченного конуса (рис. 182, в) начинают с по" основания – эллипса. Изометрическую проекцию любой точки кривой сечения находят с п. трех координат, как показано на рис. 182, в.

На оси х откладывают точки I...VII, взятые с горизонтальной проекции конуса. Из полученных точек проводят вертикальные прямые, на которых откладывают координаты z, взятые с фронтальной проекции. Через полученные на наклонной оси

эллипса точки проводят прямые, параллельные оси у, и на них откладывают отрезки 6 0 8 0 и 4 0 10 0 , взятые на действительном виде сечения.

Найденные точки соединяют по лекалу. Край­ние очерковые образующие проводят по каса­тельной к контуру основания конуса и эллипса.

Пример сечения прямого кругового конуса при­веден на рис. 182, г. Колпак сепаратора представ­ляет собой сварную конструкцию из тонкой лис­товой стали и состоит из двух конусов.

В сечении конической поверхности плоскостью получаются кривые второго порядка - окружность, эллипс, парабола и гипербола. В частом случае при определенном расположении секущей плоскости и когда она проходит через вершину конуса (S∈γ), окружность и эллипс вырождаются в точку или в сечении попадает одна или две образующих конуса.

Дает - окружность, когда секущая плоскость перпендикулярна к его оси и пересекает все образующие поверхности.

Дает - эллипс, когда секущая плоскость не перпендикулярна к его оси и пересекает все образующие поверхности.

Построим эллиптическое ω плоскостью α , занимающей общее положение.

Решение задачи на сечение прямого кругового конуса плоскостью значительно упрощается, если секущая плоскость занимает проецирующее положение.

Способом перемены плоскостей проекций переведем плоскость α из общего положения в частное - фронтально-проецирующее. На фронтальной плоскости проекций V 1 построим след плоскости α и проекцию поверхности конуса ω плоскостью дает эллипс, так как секущая плоскость пересекает все образующие конуса. Эллипс проецируется на плоскости проекций в виде кривой второго порядка.
На следе плоскости α V берем произвольную точку 3" замеряем ее удаление от плоскости проекций H и откладываем его по линии связи уже на плоскости V 1 , получая точку 3" 1 . Через нее и пройдет след αV 1 . Линия сечения конуса ω - точки A" 1 , E" 1 совпадает здесь со следом плоскости. Далее построим вспомогательную секущию плоскость γ3, проведя на фронтальной плоскости проекций V 1 ее след γ 3V 1 . Вспомогательная плоскость пересекаясь с конической поверхностью ω даст окружность, а пересекаясь с плоскостью α даст горизонтальную прямую h3. В свою очередь прямая пересекаясь с окружностью дает искомые точки C`и K` пересечения плоскости α c конической поверхностью ω . Фронтальные проекции искомых точек C" и K" построим как точки принадлежащие секущей плоскости α .

Для нахождения точки E(E`, E") линии сечения, проводим через вершину конуса горизонтально-проецирующую плоскость γ 2 H , которая пересечет плоскость α по прямой 1-2(1`-2`, 1"-2") . Пересечение 1"-2" с линией связи дает точку E" - наивысшую точку линии сечения.

Для нахождения точки указывающей границы видимости фронтальной проекции линии сечения, проводим через вершину конуса горизонтально-проецирующую плоскость γ 5 H и находим горизонтальную проекцию F` искомой точки. Также, плоскость γ 5 H пересечет плоскость α по фронтали f(f`, f") . Пересечение f" с линией связи дает точку F" . Соединяем полученные на горизонтальной проекции точки плавной кривой, отметив на ней крайнюю левую точку G - одну из характерных точек линии пересечения.
Затем, строим проекции G на фронтальных плоскостях проекций V1 и V. Все построенные точки линии сечения на фронтальной плоскости проекций V соединяем плавной линией.

Дает - параболу, когда секущая плоскость параллельна одной образующей конуса.

При построении проекций кривых - конических сечений необходимо помнить о теореме: ортогональная проекция плоского сечения конуса вращения на плоскость, перпендикулярную к его оси, есть кривая второго порядка и имеет одним из своих фокусов ортогональную проекцию на эту плоскость вершины конуса.

Рассмотрим построение проекций сечения, когда секущая плоскость α параллельна одной образующей конуса (SD) .

В сечении получится парабола с вершиной в точке A(A`, A") . Согласно теореме вершина конуса S проецируется в фокус S` . По известному =R S` определяем положение директрисы параболы. В последующем точки кривой строятся по уравнению p=R .

Построение проекций сечения, когда секущая плоскость α параллельна одной образующей конуса, может быть выполнено:

С помощью вспомогательных горизонтально-проецирующих плоскостей проходящих через вершину конуса γ 1 H и γ 2 H .

Сначала определятся фронтальные проекции точек F", G" - на пересечении образующих S"1", S"2" и следа секущей плоскости α V . На пересечении линий связи с γ 1 H и γ 2 H определяться F`, G` .

Аналогично могут быть определены и другие точки линии сечения, например D", E" и D`, E` .

С помощью вспомогательных фронтально-проецирующих плоскостей ⊥ оси конуса γ 3 V и γ 4 V .

Проекциями сечения вспомогательных плоскостей и конуса на плоскость H , будут окружности. Линиями пересечения вспомогательных плоскостей с секущей плоскостью α будут фронтально- проецирующие прямые.

Дает - гиперболу, когда секущая плоскость параллельна двум образующим конуса.

90 ° .

2. Что представляет собой сечение цилиндра плоскостью, параллельной его образующей?

Сечение - прямоугольник.

3. На основаниях цилиндра взяты две не параллельные друг другу хорды. Может ли кратчайшее расстояние между точками этих хорд быть: а) равным высоте цилиндра; б) больше высоты цилиндра; в) меньше высоты цилиндра?

АВ и CD лежат в параллельных плоскостях.

Н - высота цилиндра.

4. Две цилиндрические детали покрываются слоем никеля одинаковой толщины. Высота первой детали в два раза больше высоты второй, но радиус ее основания в два раза меньше радиуса основания второй детали. На какую из деталей расходуется больше никеля?

Первая деталь Вторая деталь

2l , l - высота (образующая),

r/2, r - радиус основания,


Боковые поверхности равны, но площадь двух оснований второй детали больше площади двух оснований первой детали.

5. Равны ли друг другу углы между образующими конуса и: а) плоскостью основания; б) его осью?


а) да; б) да.

6. Что представляет собой сечение конуса плоскостью, проходящей через его вершину?

Равнобедренный треугольник.

7. Точки А и В принадлежат шару. Принадлежит ли этому шару любая точка отрезка АВ?

8. Могут ли все вершины прямоугольного треугольника с катетами 4 см и 2 √2 см лежать на сфере радиуса √5 см?

Вычислим гипотенузу прямоугольного треугольника:


Гипотенуза не помещается внутри сферы, тогда, хотя бы одна вершина лежит вне сферы.

9. Могут ли две сферы с общим центром и с неравными радиусами иметь общую касательную плоскость?

Одна сфера всегда будет внутри другой, поэтому общую касательную плоскость провести невозможно.

10. Что представляет собой множество всех точек пространства, из которых данный отрезок виден под прямым углом?

Это сфера, у которой данный отрезок является диаметром.

Теорема (о сечении конуса). Если плоскость пересекает конус и параллельна плоскости его основания, то сечение конуса такой плоскостью подобно основанию конуса. Коэффициент их подобия равен отношению расстояния от вершины конуса до плоскости сечения к высоте конуса.

Напомним, что фигура F подобна фигуре F с коэффициентом , если можно так сопоставить их точки, что для любых точек X, Y фигуры F и соответствующих им точек XY фигуры F (рис. 8.5).

Пусть Р - вершина конуса К, фигура F - его основание, F - сечение конуса К плоскостью а, параллельной плоскости а основания F (рис. 8.6). Докажем, что фигуры F и F подобны. Для этого каждой точке сопоставим точку , в которой отрезок РХ пересекает плоскость а.

Проведем высоту РА конуса К и пусть А - точка, в которой высота РА пересекает плоскость а. Отрезок

РА является высотой конуса К, отсеченного плоскостью а.

Возьмем любые две точки X, Y основания F и пусть X, Y - соответствующие им точки F. Рассмотрим треугольники PXY и PXY. Они подобны, так как отрезки XY и XY параллельны (поскольку плоскость PXY пересекает параллельные плоскости а и а по параллельным прямым). Поэтому

Цель: найти натуральную величину сечения прямого кругового конуса методом замены плоскостей.

Контрольные вопросы:

1. Перечислите виды сечения кругового конуса?

Задание: методом замены плоскостей проекций найти натуральную величину сечения прямого кругового конуса фронтально-проецирующей плоскостью; объекты заданы проекциями на горизонтальную и фронтальную плоскость (варианты заданий приведены в приложении В).

Решим задачу с помощью однократной замены плоскостей проекций. Фигура сечения представляет собой эллипс, который изображается на фронтальной плоскости проекций отрезком прямой, а на горизонтальной плоскости проекций - эллипсом.

Исходные данные для решения задачи приведены на рисунке 7.1.

Заметим, что фронтальная проекция сечения задается отрезком 1 2 – 2 2 и ее длина определяет длину одной из осей искомого эллипса. Построим проекцию осевой линии на плоскость П 5 и найдем проекцию оси 1-2 на эту плоскость и на горизонтальную плоскость (рис. 7.2).

Вторая ось эллипса представляет собой фронтально-проецирующий горизонтальный отрезок, его фронтальная проекция представляет собой точку в середине отрезка 1 2 – 2 2 . Для определения длины этой оси проведем через эту точку вспомогательную фронтально-проецирующую горизонтальную плоскость Σ. Плоскость Σ пересекает конус по окружности, на рисунке 7.3 показано, как определить ее радиус и построить горизонтальную проекцию. Вторая ось эллипса лежит в плоскости этой окружности и касается поверхности конуса в точках 3 и 4. На рисунке 7.4 показано отыскание горизонтальных проекций этих точек. Отрезок 3 2 – 4 2 определяет длину второй оси эллипса.

Построим проекцию оси 3-4 на плоскость П 5 , для этого, как и в предыдущих лабораторных работах, применим команду ALIGN. Результат приведен на рисунке 7.5. Для наглядности горизонтальная проекция оси восстановлена.

На рисунке 7.6 показан результат построения натуральной величины сечения в виде эллипса, заданного осями 1 5 – 2 5 и 3 5 – 4 5 . На этом же рисунке построена горизонтальная проекция сечения, это тоже эллипс, заданный осями 1 1 – 2 1 и 3 1 – 4 1 .

Трехмерная модель сечения приведена на рисунке 7.7.

Рисунок 7.7 – Трехмерная модель сечения

Если секущая плоскость пересекает основание конуса, следует продлить коническую поверхность так, чтобы плоскость пересекала все образующие. Это даст возможность построить сечение в виде эллипса и высечь из него эллиптическую дугу, представляющую сечение заданного конуса (рис. 7.8). Это можно сделать с помощью команды TRIM, воспользовавшись в качестве секущих кромок отрезками 5 5 – 6 5 (для натуральной величины сечения) и 5 1 – 6 1 (для горизонтальной проекции сечения).

Рисунок 7.8 – Сечение в виде эллиптической дуги

Трехмерная модель для этого случая приведена на рисунке 7.9.

Рисунок 7.9 – Трехмерная модель сечения в виде эллиптической дуги

Лабораторная работа №8

Понравилась статья? Поделитесь с друзьями!