Чтобы вычесть числа с разными знаками надо. Сложение чисел с разными знаками: правило, примеры. Примеры вычитания чисел с разными знаками

Сложение отрицательных чисел.

Сумма отрицательных чисел есть число отрицательное. Модуль суммы равен сумме модулей слагаемых .

Давайте разберемся, почему же сумма отрицательных чисел будет тоже отрицательным числом. Поможет нам в этом координатная прямая, на которой мы выполним сложение чисел -3 и -5. Отметим на координатной прямой точку, соответствующее числу -3.

К числу -3 нам нужно прибавить число -5. Куда мы пойдем от точки, соответствующей числу -3? Правильно, влево! На 5 единичных отрезков. Отмечаем точку и пишем число ей соответствующее. Это число -8.

Итак, при выполнении сложения отрицательных чисел с помощью координатной прямой мы все время находимся слева от начала отсчета, поэтому, понятно, что результат сложения отрицательных чисел есть число тоже отрицательное.

Примечание. Мы складывали числа -3 и -5, т.е. находили значение выражения -3+(-5). Обычно при сложении рациональных чисел просто записывают эти числа с их знаками, как бы перечисляют все числа, которые нужно сложить. Такую запись называют алгебраической суммой. Применяют (в нашем примере) запись: -3-5=-8.

Пример. Найти сумму отрицательных чисел: -23-42-54. (Согласитесь, что эта запись короче и удобнее вот такой: -23+(-42)+(-54))?

Решаем по правилу сложения отрицательных чисел: складываем модули слагаемых: 23+42+54=119. Результат будет со знаком «минус».

Записывают обычно так: -23-42-54=-119.

Сложение чисел с разными знаками.

Сумма двух чисел с разными знаками имеет знак слагаемого с большим модулем. Чтобы найти модуль суммы, нужно из большего модуля вычесть меньший .

Выполним сложение чисел с разными знаками с помощью координатной прямой.

1) -4+6. Требуется к числу -4 прибавить число 6. Отметим число -4 точкой на координатной прямой. Число 6 — положительное, значит от точки с координатой -4 нам нужно идти вправо на 6 единичных отрезков. Мы оказались справа от начала отсчета (от нуля) на 2 единичных отрезка.

Результат суммы чисел -4 и 6 — это положительное число 2:

— 4+6=2. Как можно было получить число 2? Из 6 вычесть 4, т.е. из большего модуля вычесть меньший. У результата тот же знак, что и у слагаемого с большим модулем.

2) Вычислим: -7+3 с помощью координатной прямой. Отмечаем точку, соответствующую числу -7. Идем вправо на 3 единичных отрезка и получаем точку с координатой -4. Мы были и остались слева от начала отсчета: ответ — отрицательное число.

— 7+3=-4. Этот результат мы могли получить так: из большего модуля вычли меньший, т.е. 7-3=4. В результате поставили знак слагаемого, имеющего больший модуль: |-7|>|3|.

Примеры. Вычислить: а) -4+5-9+2-6-3; б) -10-20+15-25.

На действиях с положительными и отрицательными числами основан практически весь курс математики. Ведь как только мы приступаем к изучению координатной прямой, числа со знаками «плюс» и «минус» начинают встречаться нам повсеместно, в каждой новой теме. Нет ничего проще, чем сложить между собой обычные положительные числа, нетрудно и вычесть одно из другого. Даже арифметические действия с двумя отрицательными числами редко становятся проблемой.

Однако многие путаются в сложении и вычитании чисел с разными знаками. Напомним правила, по которым происходят эти действия.

Сложение чисел с разными знаками

Если для решения задачи нам требуется прибавить к некоторому числу «а» отрицательное число «-b», то действовать нужно следующим образом.

  • Возьмем модули обоих чисел - |a| и |b| - и сравним эти абсолютные значения между собой.
  • Отметим, какой из модулей больше, а какой меньше, и вычтем из большего значения меньшее.
  • Поставим перед получившимся числом знак того числа, модуль которого больше.

Это и будет ответом. Можно выразиться проще: если в выражении a + (-b) модуль числа «b» больше, чем модуль «а», то мы отнимаем «а» из «b» и ставим «минус» перед результатом. Если больше модуль «а», то «b» вычитается из «а» - а решение получается со знаком «плюс».

Бывает и так, что модули оказываются равны. Если так, то на этом месте можно остановиться - речь идет о противоположных числах, и их сумма всегда будет равна нулю.

Вычитание чисел с разными знаками

Со сложением мы разобрались, теперь рассмотрим правило для вычитания. Оно тоже довольно простое - и кроме того, полностью повторяет аналогичное правило для вычитания двух отрицательных чисел.

Для того, чтобы вычесть из некоего числа «а» - произвольного, то есть с любым знаком - отрицательное число «с», нужно прибавить к нашему произвольному числу «а» число, противоположное «с». Например:

  • Если «а» - положительное число, а «с» - отрицательное, и из «а» нужно вычесть «с», то записываем так: а – (-с) = а + с.
  • Если «а» - отрицательное число, а «с» - положительное, и из «а» нужно вычесть «с», то записываем следующим образом: (- а)– с = - а+ (-с).

Таким образом, при вычитании чисел с разными знаками в итоге мы возвращаемся к правилам сложения, а при сложении чисел с разными знаками - к правилам вычитания. Запоминание данных правил позволяет решать задачи быстро и без труда.

Если температура воздуха была равна 9°С, а потом она изменилась на -6°С (т. е. понизилась на 6°С), то она стала равной 9 + (-6) градусам (рис. 83).

Рис. 83

Чтобы сложить числа 9 и -6 с помощью координатной прямой, надо точку A(9) переместить влево на 6 единичных отрезков (рис. 84). Получим точку В(3).

Рис. 84

Значит, 9 + (-6) = 3. Число 3 имеет тот же знак, что и слагаемое 9, а его модуль равен разности модулей слагаемых 9 и -6.

Действительно, |3| = 3 и |9| - |-6| = 9 - 6 = 3.

Если та же температура воздуха 9°С изменилась на -12°С (т. е. понизилась на 12°С), то она стала равной 9 + (-12) градусам (рис. 85).

Рис. 85

Сложив числа 9 и -12 с помощью координатной прямой (рис. 86), получим 9 + (-12) = -3. Число -3 имеет тот же знак, что и слагаемое -12, а его модуль равен разности модулей слагаемых -12 и 9.

Рис. 86

Действительно, |-3| = 3 и |-12| - |-9| = 12 - 9 = 3.

Обычно сначала определяют и записывают знак суммы, а потом находят разность модулей.

Например:

При сложении положительных и отрицательных чисел можно использовать микрокалькулятор. Чтобы ввести отрицательное число в микрокалькулятор, надо ввести модуль этого числа, потом нажать клавишу «изменение знака» . Например, чтобы ввести число -56,81, надо последовательно нажимать клавиши: . Операции над числами любого знака выполняются на микрокалькуляторе так же, как над положительными числами. Например, сумму -6,1 + 3,8 вычисляют по программе

Короче эту программу пишут так: .

Вопросы для самопроверки

  • Числа а и b имеют разные знаки. Какой знак будет иметь сумма этих чисел, если больший модуль имеет отрицательное число? если меньший модуль имеет отрицательное число? если больший модуль имеет положительное число? если меньший модуль имеет положительное число?
  • Сформулируйте правило сложения чисел с разными знаками.
  • Как ввести в микрокалькулятор отрицательное число?

Выполните упражнения

1061. Число 6 изменили на -10. С какой стороны от начала отсчёта расположено получившееся число? На каком расстоянии от начала отсчёта оно находится? Чему равна сумма 6 и -10?

1062. Число 10 изменили на -6. С какой стороны от начала отсчёта расположено получившееся число? На каком расстоянии от начала отсчёта оно находится? Чему равна сумма 10 и -6?

1063. Число -10 изменили на 3. С какой стороны от начала отсчёта расположено получившееся число? На каком расстоянии от начала отсчёта оно находится? Чему равна сумма -10 и 3?

1064. Число -10 изменили на 15. С какой стороны от начала отсчёта расположено получившееся число? На каком расстоянии от начала отсчёта оно находится? Чему равна сумма -10 и 15?

1065. В первую половину дня температура изменилась на -4°С, а во вторую - на +12 °С. На сколько градусов изменилась температура в течение дня?

1066. Выполните сложение:

  • а) 26 + (-6);
  • б) -70 + 50;
  • в) -17 + 30;
  • г) 80 + (-120);
  • д) -6,3 + 7,8;
  • е) -9 + 10,2;
  • ж) 1 + (-0,39);
  • з) 0,3 + (-1,2);

1067. Прибавьте:

  • а) к сумме -6 и -12 число 20;
  • б) к числу 2,6 сумму -1,8 и 5,2;
  • в) к сумме -10 и -1,3 сумму 5 и 8,7;
  • г) к сумме 11 и -6,5 сумму -3,2 и -6.

1068. Какое из чисел 8; 7,1; -7,1; -7; -0,5 является корнем уравнения -6 + х = -13,1?

1069. Угадайте корень уравнения и выполните проверку:

  • а) х + (-3) = -11;
  • б) -5 + у = 15;
  • в) т + (-12) = 2;
  • г) 3 + п = -10.

1070. Найдите значение выражения:

1071. Выполните действия с помощью микрокалькулятора:

  • а) -3,2579 + (-12,308);
  • б) 7,8547 + (-9,239);
  • в) -0,00154 + 0,0837;
  • г) -3,8564 + (-0,8397) + 7,84;
  • д) -0,083 + (-6,378) + 3,9834;
  • е) -0,0085 + 0,00354 + (-0,00921).

1072. Найдите значение суммы:

1073. Найдите значение выражения:

1074. Сколько целых чисел расположено между числами:

  • а) 0 и 24;
  • б) -12 и -3;
  • в) -20 и 7?

1075. Представьте число -10 в виде суммы двух отрицательных слагаемых так, чтобы:

  • а) оба слагаемых были целыми числами;
  • б) оба слагаемых были десятичными дробями;
  • в) одно из слагаемых было правильной обыкновенной дробью.

1076. Каково расстояние (в единичных отрезках) между точками координатной прямой с координатами:

  • а) 0 и а;
  • б) -а и а;
  • в) -а и 0;
  • г) а и -За?

1077. Радиусы географических параллелей земной поверхности, на которых расположены города Афины и Москва, соответственно равны 5040 км и 3580 км (рис. 87). На сколько параллель Москвы короче параллели Афин?

Рис. 87

1078. Составьте уравнение для решения задачи: «Поле площадью 2,4 га разделили на два участка. Найдите площадь каждого участка, если известно, что один из участков:

1079. Решите задачу:

  1. В первый день путешественники проехали 240 км, во второй день 140 км, в третий день они проехали в 3 раза больше, чем во второй, а в четвёртый день они отдыхали. Сколько километров они проехали в пятый день, если за 5 дней они проезжали в среднем по 230 км в день?
  2. Фермер с двумя сыновьями собранные яблоки поместили в 4 контейнера, в среднем по 135 кг в каждый. Фермер собрал 280 кг яблок, а младший сын - в 4 раза меньше. Сколько килограммов яблок собрал старший сын?

1080. Выполните действия:

  1. (2,35 + 4,65) 5,3: (40 - 2,9);
  2. (7,63 - 5,13) 0,4: (3,17 + 6,83).

1081. Выполните сложение:

1082. Представьте в виде суммы двух равных слагаемых каждое из чисел: 10; -8; -6,8; .

1083. Найдите значение а + b, если:

1084. На одном этаже жилого дома было 8 квартир. Жилую площадь по 22,8 м 2 имели 2 квартиры, по 16,2 м 2 - 3 квартиры, по 34 м 2 - 2 квартиры. Какую жилую площадь имела восьмая квартира, если на этом этаже в среднем на каждую квартиру приходилось по 24,7 м 2 жилой площади?

1085. В составе товарного поезда было 42 вагона. Крытых вагонов было в 1,2 раза больше, чем платформ, а число цистерн составляло числа платформ. Сколько вагонов каждого вида было в составе поезда?

1086. Найдите значение выражения

На этом уроке мы узнаем, что такое отрицательное число и какие числа называются противоположными. Также научимся складывать отрицательные и положительные числа (числа с разными знаками) и разберём несколько примеров сложения чисел с разными знаками.

Посмотрите на эту шестеренку (см. рис. 1).

Рис. 1. Шестеренка часов

Это не стрелка, которая непосредственно показывает время и не циферблат (см. рис. 2). Но без этой детали часы не работают.

Рис. 2. Шестеренка внутри часов

А что обозначает буква Ы? Ничего, кроме звука Ы. Но без нее не будут «работать» многие слова. Например, слово «мЫшь». Так и отрицательные числа: они не показывают никакого количества, но без них механизм вычислений был бы существенно труднее.

Мы знаем, что сложение и вычитание равноправные операции, и их можно выполнять в любом порядке. В записи в прямом порядке мы можем посчитать: , а начать с вычитания нет, так как мы не договорились еще, а что же такое .

Понятно, что увеличить число на , а потом уменьшить на означает в итоге уменьшение на три. Почему бы так и не обозначить этот объект и так и считать: прибавить - значит вычесть . Тогда .

Число может означать, например, яблока. Новое число не обозначает никакого реального количества. Само по себе оно ничего не означает, как буква Ы. Это просто новый инструмент для упрощения вычислений.

Назовем новые числа отрицательными . Теперь мы можем вычитать из меньшего числа большее. Технически всё равно нужно вычесть из большего числа меньшего, но в ответе поставить знак минус: .

Рассмотрим ещё один пример: . Можно сделать все действия подряд: .

Однако из первого числа легче вычесть третье, а потом прибавить второе число:

Отрицательные числа можно определить и по-другому.

Для каждого натурального числа, например , введем новое число, которое обозначим , и определим, что оно обладает следующим свойством: сумма числа и равна : .

Число будем называть отрицательным, а числа и - противоположными. Таким образом, мы получили бесконечное количество новых чисел, например:

Противоположное для числа ;

Противоположное числу ;

Противоположное числу ;

Противоположное числу ;

Вычтем из меньшего числа большее: . Прибавим к данному выражению : . Получили ноль. Однако согласно свойству: число, которое в сумме с пятью дает ноль, обозначается минус пять : . Следовательно, выражение можно обозначить как .

У каждого положительного числа существует число-близнец, которое отличается только тем, что перед ним стоит знак минус Такие числа называются противоположными (см. рис. 3).

Рис. 3. Примеры противоположных чисел

Свойства противоположных чисел

1. Сумма противоположных чисел равна нулю: .

2. Если из нуля вычесть положительное число, то результатом будет противоположное отрицательное число: .

1. Оба числа могут быть положительными, и складывать их мы уже умеем: .

2. Оба числа могут быть отрицательными.

Мы уже прошли сложение таких чисел на предыдущем уроке, но убедимся, что понимаем, что с ними делать. Например: .

Чтобы эту сумму найти, складываем противоположные положительные числа и и ставим знак минус.

3. Одно число может быть положительным, а другое - отрицательным.

Прибавление отрицательного числа мы, если это нам удобно, можем заменять на вычитание положительного: .

Ещё один пример: . Опять сумму записываем как разность. Вычесть из меньшего большее число можно, вычитая из большего меньшее, но поставив знак минус.

Слагаемые можем менять местами: .

Ещё один аналогичный пример: .

Во всех случаях в итоге получается вычитание.

Чтобы коротко сформулировать эти правила, давайте вспомним еще один термин. Противоположные числа, конечно, не равны друг другу. Но было бы странно не заметить у них общего. Это общее мы назвали модулем числа . Модуль у противоположных чисел одинаковый: у положительного числа он равен самому числу, а у отрицательного - противоположному, положительному. Например: , .

Чтобы сложить два отрицательных числа, нужно сложить их модули и поставить знак минус:

Чтобы сложить отрицательное и положительное число, нужно из большего модуля вычесть меньший модуль и поставить знак числа с большим модулем:

Оба числа отрицательные, следовательно, складываем их модули и ставим знак минус:

Два числа с разными знаками, следовательно, из модуля числа (больший модуль) вычитаем модуль числа и ставим знак минус (знак числа с большим модулем):

Два числа с разными знаками, следовательно, из модуля числа (больший модуль) вычитаем модуль числа и ставим знак минус (знак числа с большим модулем): .

Два числа с разными знаками, следовательно, из модуля числа (больший модуль) вычитаем модуль числа и ставим знак плюс (знак числа с большим модулем): .

У положительных и отрицательных чисел исторически разная роль.

Сначала мы ввели натуральные числа для счета предметов:

Потом мы ввели другие положительные числа - дроби, для счета нецелых количеств, частей: .

Отрицательные же числа появились как инструмент для упрощения расчетов. Не было такого, чтобы в жизни были какие-то количества, которые нам было не посчитать, и мы изобрели отрицательные числа.

То есть отрицательные числа не возникли из реального мира. Просто они оказались настолько удобными, что кое-где им нашлось применение и в жизни. Например, мы часто слышим про отрицательную температуру. При этом мы никогда не сталкиваемся с отрицательным количеством яблок. В чем же разница?

Разница в том, что в жизни отрицательные величины используют только для сравнения, но не для количеств. Если в гостинице оборудовали подвал и туда пустили лифт, то, чтобы оставить привычную нумерацию обычных этажей, может появиться минус первый этаж. Этот минус первый означает всего лишь на этаж ниже уровня земли (см. рис. 1).

Рис. 4. Минус первый и минус второй этажи

Отрицательная температура отрицательна только по сравнению с нулем, который выбрал автор шкалы Андерс Цельсий. Есть другие шкалы, и та же самая температура уже может не быть там отрицательной.

При этом мы понимаем, что невозможно поменять точку отсчета так, чтобы яблок стало не пять, а шесть. Таким образом, в жизни положительные числа используются для определения количеств ( яблок, торта).

Еще мы их используем вместо имен. Каждому телефону можно было бы дать свое имя, но количество имен ограничено, а чисел нет. Поэтому мы используем номера для телефонов. Также для упорядочивания ( век идет за веком).

Отрицательные числа в жизни используются в последнем смысле (минус первый этаж ниже нулевого и первого этажей)

  1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. М.: Мнемозина, 2012.
  2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. «Гимназия», 2006.
  3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. М.: Просвещение, 1989.
  4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. М.: ЗШ МИФИ, 2011.
  5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6 классов заочной школы МИФИ. М.: ЗШ МИФИ, 2011.
  6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. М.: Просвещение, Библиотека учителя математики, 1989.
  1. Math-prosto.ru ().
  2. Youtube ().
  3. School-assistant.ru ().
  4. Allforchildren.ru ().

Домашнее задание

Данная статья посвящена числам с разными знаками. Мы будем разбирать материал и пытаться выполнять вычитание между этими числами. В параграфе мы познакомимся с основными понятиями и правилами, которые пригодятся во время решения упражнений и задач. Также в статье представлены подробно разобранные примеры, которые помогут лучше понять материал.

Yandex.RTB R-A-339285-1

Как правильно выполнять вычитание

Для того, чтобы лучше понять процесс вычитания, следует начать с основных определений.

Определение 1

Если вычесть из числа a число b , то это можно преобразовать как сложение числа a и - b , где b и − b – числа с противоположными знаками.

Если выразить данное правило буквами, то оно выглядит так a − b = a + (− b) , где a и b – любые действительные числа.

Данное правило вычитания чисел с разными знаками работает для действительных, рациональных и целых чисел. Его можно доказать на основании свойств действий с действительными числами. Благодаря им мы может представить числа как несколько равенства (a + (− b)) + b = a + ((− b) + b) = a + 0 = a . Так как сложение и вычитание тесно связаны, то равным также будет выражение a − b = a + (− b) . Это значит, что рассматриваемое правило вычитания также верно.

Данное правило, которое применяется для вычитания чисел с разными знаками, позволяет работать как с положительными, так и с отрицательными числами. Также можно производить процесс вычитания из отрицательного числа из положительного, которое переходит в сложение.

Для того, чтобы закрепить полученную информацию, мы рассмотрим типичные примеры и на практике рассмотрим правило вычитания для чисел с разными знаками.

Примеры упражнений на вычитание

Закрепим материал, рассмотрев типичные примеры.

Пример 1

Необходимо выполнить вычитание 4 из − 16 .

Для того, чтобы выполнить вычитание, следует взять число, противоположное вычитаемому 4 , есть − 4 . Согласно рассмотренному выше правилу вычитания (− 16) − 4 = (− 16) + (− 4) . Далее мы должны сложить получившиеся отрицательные числа. Получаем: (− 16) + (− 4) = − (16 + 4) = − 20 . (− 16) − 4 = − 20 .

Для того, чтобы выполнять вычитание дробей, необходимо представлять числа в виде обыкновенных или десятичных дробей. Это зависит от того, с числами какого вида будет удобнее проводить вычисления.

Пример 2

Необходимо выполнить вычитание − 0 , 7 от 3 7 .

Прибегаем к правилу вычитания чисел. Заменяем вычитание на сложение: 3 7 - (- 0 , 7) = 3 7 + 0 , 7 .

Мы складываем дроби и получаем ответ в виде дробного числа. 3 7 - (- 0 , 7) = 1 9 70 .

Когда какое-либо число представлено в виде квадратного корня, логарифма, основной и тригонометрических функций, то зачастую результат вычитания может быть записан в виде числового выражения. Чтобы пояснить данное правило, рассмотрим следующий пример.

Пример 3

Необходимо выполнить вычитание числа 5 из числа - 2 .

Воспользуемся описанным выше правилом вычитания. Возьмем противоположное число вычитаемому 5 – это − 5 . Согласно работы с числами с разными знаками - 2 - 5 = - 2 + (- 5) .

Теперь выполним сложение: получаем - 2 + (- 5) = 2 + 5 .

Полученное выражение и является результатом вычитания исходных чисел с разными знаками: - 2 + 5 .

Значение полученного выражения может быть вычислено максимально точно только в том случае, если это необходимо. Для подробной информации можно изучить другие разделы, связанные с данной темой.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Понравилась статья? Поделитесь с друзьями!